广告位
首页 我国垃圾渗滤液膜浓缩液处理现状与污染控制建议

我国垃圾渗滤液膜浓缩液处理现状与污染控制建议

作者:艾恒雨,孟棒棒,李娜,俞哲彬,黄启飞,田书磊

  垃圾渗滤液膜浓缩液是膜工艺处理垃圾渗滤液的副产物,与垃圾渗滤液相比,其有机污染物、无机盐和金属离子浓度更高,且生化性较差,若处置不当会造成更严重的二次污染。通过对国内外膜浓缩液典型处理工艺的分析,探讨回灌、高级氧化、蒸发、“预处理+高级氧化+深度处理”等不同工艺的处理效果、存在问题以及工程应用现状。

  实际调研结果表明:我国膜浓缩液的安全处理尚处于起步阶段,高级氧化、浸没燃烧蒸发(SCE)和机械式蒸汽再压缩(MVC/MVR)等工程应用技术也仅为小试或中试规模。为有效保障我国膜浓缩液安全处置,建议从源头减少膜浓缩液产量,改进并完善已有膜浓缩液处理技术,开发膜浓缩液资源化利用技术,妥善处理膜浓缩液二次污染物。

  近年来,我国垃圾渗滤液污染事件呈高发势态。据统计,2010年我国西安、安徽、福建、广西、深圳等地发生渗滤液污染事件10余起,严重污染了地表水、地下水、土壤和农田,危害人体健康。2016年2月23日,昆明市盘龙区法院开庭审理了非法倾倒568.34t生活垃圾渗滤液案件,该案成为中国首例垃圾渗滤液污染环境刑事案。垃圾渗滤液的环境安全处理处置与有效管理,已成为环境保护领域和管理部门的重要课题。

  为加强渗滤液环境风险防范,逐步提升渗滤液处理技术水平,2008年我国修订实施了GB16889—2008《生活垃圾填埋场污染控制标准》,对垃圾渗滤液的排放限值提出了更为严格的要求。传统意义上以生化处理为主的工艺已无法满足排放标准要求,以膜技术〔反渗透(RO)工艺为主〕为核心的“生化处理+膜法深度处理”组合工艺逐步成为渗滤液处理的主流工艺。

  据统计,2008年7月1日后建成运行的渗滤液处理设施有509座,总处理量为38836t/d。其中,含RO工艺渗滤液处理设施的有242座,处理量为21842t/d,占总处理量的56.2%。509座渗滤液处理设施中有259座执行GB16889—2008标准,其中,含RO工艺设施的有209座,处理量为19920t/d,占总处理量的51.3%。

  膜处理工艺属于物质分离的纯物理过程,处理过程产生约20%~30%的膜浓缩液(以下简称“浓缩液”)。相比原渗滤液,浓缩液中无机盐和污染物浓度更高,若不能妥善处理而直接排放到环境中会造成严重的二次污染。笔者对国内外浓缩液的几种主要处理工艺进行深入分析与探讨,并提出我国浓缩液的污染控制措施。

  浓缩液的产生与特性

  目前,国内外常用的膜分离工艺主要有微滤(MF)、超滤(UF)、纳滤(NF)和反渗透等。纳滤和反渗透工艺是以压力差为推动力,利用膜的选择透过性截留物质,从溶液中分离出溶剂的液体分离操作技术。反渗透和纳滤工艺在垃圾渗滤液处理上都有应用,因此会产生浓缩液。目前,我国采用膜工艺处理的渗滤液约为50000t/d,占渗滤液处理总量的65.7%,若浓缩液按25%产率计算,我国每年产生浓缩液约456万t。

  与渗滤液和生活污水相比较,浓缩液具有以下特点:

  (1)成分复杂,有机污染物浓度高,COD通常为1000~5000mg/L,最高可达15000mg/L。

  (2)无机盐组分高,电导率高达20000~50000μS/cm,除了常规Na+、K+外,还含有Pb、Cu等重金属离子。

  (3)氯离子浓缩的腐蚀问题。

  (4)可生化性较差,BOD/COD一般小于0.1,多为难生物降解的物质。

  (5)浓缩液的色度和硬度都很高,色度一般为500~1500倍,呈棕黑色,硬度通常为1000~2500mg/L。

  垃圾渗滤液膜浓缩液处理工艺

  膜技术处理渗滤液不仅要考虑技术、经济等问题,更要考虑环境管理和二次污染物(如浓缩液)的安全处置问题。目前,关于浓缩液的处理方法并不多,且相关文献资料也非常有限。典型的浓缩液处理方法主要有回灌工艺、蒸发工艺和高级氧化技术;在此基础上发展而来的组合工艺主要是“预处理+高级氧化+深度处理”。

  2.1回灌工艺

  回灌工艺是国内外最普遍的浓缩液处理工艺,是依照渗滤液回灌发展而来的,与渗滤液回灌的原理相同。回灌工艺是把垃圾填埋场当作一个用垃圾作为填料的生物反应器,回灌液自上而下地流经垃圾填埋层时,通过垃圾中微生物的分解,达到降解回灌液中有机污染物的目的。

  德国自1986年开始采用回灌工艺处理浓缩液,迄今仍有部分填埋场在使用。我国的浓缩液回灌始于21世纪初,宋延冬等以宜昌、宁国、蒙城垃圾填埋场为例,研究了碟管式反渗透(DTRO)浓缩液回灌工艺,建议浓缩液回灌方式应根据垃圾填埋场的地理特征和业主的具体要求来确定。

  山谷型填埋场宜采用石笼回灌法,施工简单,成本较低;平原型填埋场宜采用两层生物滤化床方式,而采用石笼回灌法易出现短流现象。DTRO浓缩液回灌对渗滤液电导率无明显影响,不会影响后续反渗透系统的正常运行。张其其通过模拟试验研究了垃圾填埋场浓缩液直接回灌和经过Fenton预处理后循环回灌对填埋垃圾稳定化的影响,结果表明,浓缩液的循环回灌可有效减少填埋场中污染物的排放量。

  但一些研究者对采用浓缩液回灌工艺的填埋场进行了监测,发现浓缩液回灌存在许多弊端。Calabro等对意大利蒙苏马诺泰尔梅市的垃圾填埋场浓缩液回灌系统进行监测,结果表明,最初30个月虽然渗滤液的产量没有显著增加,但COD、镍、锌等污染物浓度却有所增加。Talalaj等对波兰东北部的某城市垃圾填埋场进行了监测,并分析了该填埋场第1年反渗透利用以及浓缩液回灌的相关数据,结果表明,浓缩液回灌不仅会导致电导率、COD、NH3-N浓度上升,还会使硫酸盐的浓度增加。

  由此可知,虽然回灌工艺在一定程度上能够降解部分污染物,但是随着时间的推移,其弊端越来越明显,浓缩液中盐分和难降解的污染物逐渐积累,从而导致反渗透系统中的渗透压增高,膜结垢严重,使膜回收率下降,严重时会造成浓缩液处理系统瘫痪。

  2.2蒸发工艺

  蒸发工艺是把挥发性组分与非挥发性组分分离的物理过程,采用蒸发工艺处理浓缩液时,水分会从溶液中沸出,而污染物最终残留在浓缩液中。目前,国内外比较常用的蒸发工艺有浸没燃烧蒸发(SCE)技术和机械式蒸汽再压缩(MVC/MVR)技术,其原理分别如图1和图2所示。

  SCE技术是一种节能环保的新型燃烧技术,又称为液中燃烧法。该技术是将燃气与空气燃烧产生的高温烟气直接喷入液体中,没有固定的传热面,直接接触传热,使浓缩液加热蒸发。SCE技术与传统蒸发工艺相比具有如下优点:1)不存在传热面上的结晶、结垢等问题,适合于加热和蒸发腐蚀性强、黏稠、易结晶和结垢的液体;2)热效率高,通常可达95%以上;3)与间壁式换热器相比,设备简单。

  岳东北等采用SCE技术处理北京市某卫生填埋场经RO工艺浓缩后的浓缩液,结果表明,该技术成功对浓缩液中的难降解有机物进行了分离,处理效果稳定,出水水质达到了GB16889—1997的二级排放标准。该技术充分利用了填埋场内的LFG(垃圾填埋气),消除环境污染的同时提高了能源利用率。但是,该技术对NH3-N去除效果不理想。同时,浓缩液中高浓度的氯离子在系统加热过程中可能会对设备产生腐蚀。

  MVC/MVR技术是利用蒸发系统自身产生的二次蒸汽及其能量,经蒸汽压缩机压缩做功,提升二次蒸汽的热能,如此循环向蒸发系统供热,从而减少对外界能源需求的一项节能技术。现阶段MVC/MVR技术主要应用于渗滤液的处理方面,在处理过程中存在结垢、清洗等问题。孙辉跃等采用预处理+MVR+酸洗塔+碱洗塔工艺对厦门某垃圾填埋场渗滤液处理站的浓缩液进行中试试验,结果表明,正常运行情况下,MVR技术对COD与TN有很好的去除效果。但实际工程中设备清洗频繁,很难稳定运行。

  二次浓缩液的安全处置是蒸发工艺急需解决的关键问题。依据二次浓缩液的理化特性,可以采取焚烧方式进行处置,或脱水干化后进行包埋从而将其固化到填埋场等。但焚烧不仅会影响垃圾热值,而且容易腐蚀焚烧设施;若直接回灌填埋场会导致浓缩液中无机盐和难降解污染物积累,电导率升高,使后续反渗透工艺结垢严重,出水率下降,严重时会使浓缩液处理系统瘫痪。

  2.3高级氧化技术

  高级氧化技术在城市污水和工业废水处理领域已较为成熟。近年来,其在渗滤液和浓缩液领域的研究和应用日益增多。王洪庆等研究了Fenton法及其联合工艺处理垃圾渗滤液膜浓缩液,结果表明,在最佳操作条件下,COD的去除率可达80%~95%,色度和NH3-N浓度也显著降低;Wang等也通过相同的处理工艺,得到了相似的处理效果;朱卫兵等采用臭氧氧化工艺处理垃圾渗滤液膜浓缩液,结果表明,臭氧氧化后浓缩液中的COD显著降低,且可生化性显著提高;黄力彦等研究了电化学氧化法处理垃圾渗滤液膜浓缩液,结果表明,在最佳条件下,COD的去除率可达79%~90%,NH3-N的去除率可达55%~75%;Top等也通过相同的处理工艺进行试验,得到了相似的处理效果。

  但高级氧化技术在处理浓缩液时也存在诸多问题:Fenton法所用试剂量大、时间长、pH要求低、可能造成二次污染等;臭氧氧化工艺成本较高;电化学氧化法必须考虑如何降低阳极材料成本以及延长其使用寿命等问题;各方法单独使用时仍不能达到排放标准。因而,在处理浓缩液时,需要与其他工艺联合使用。

  2.4组合工艺

  单一的技术工艺很难满足浓缩液的处理要求,组合工艺越来越受到众多研究者的关注。现阶段研究较多的组合工艺主要有“预处理+高级氧化+深度处理”。

  张龙等研究了混凝沉淀-树脂吸附-Fenyon氧化工艺对浓缩液的处理效果,结果表明,浓缩液先经过混凝沉淀预处理,去除部分有机物和金属离子;再经过树脂吸附,可有效降低COD及氨氮浓度,COD去除率达到98.1%。覃芳慧等探讨了双泥SBR工艺对Fenton处理后渗滤液与人工配水混合处理的可行性,结果表明,COD、NH3-N、TN和腐殖酸的平均去除率分别为85%、75%、70%和70%。

  李凯原等研究了Fenton氧化+脉冲电解技术处理垃圾渗滤液反渗透浓缩液,结果表明,最佳条件下COD和NH3-N的去除率分别可达95%和86%。Li等采用Fenton氧化混凝+光催化Fenton联合工艺对某城市垃圾填埋场渗滤液处理厂的纳滤浓缩液进行了处理,结果表明,Fenton氧化混凝法能够去除70%有机污染物,并且联合工艺中过氧化氢的分解效率从216%提高到228%。

  2.5各工艺的主要特点及存在问题

  各工艺的特点及存在的问题见表1。

  由表1可知,不同工艺具有各自不同的特点和使用条件。如回灌工艺会导致渗滤液无机盐积累、电导率增加,对后续膜工艺影响较大;蒸发工艺存在二次浓缩液的安全处置问题;高级氧化技术必须与其他工艺联用才能达到排放标准,且稳定性较差。同时,各工艺缺乏在实际工程中的稳定运行成功案例。

  结语

  浓缩液的安全处理处置是当前浓缩液处理技术发展的瓶颈,更是环境管理的重点和难点。目前,国内浓缩液的处理技术仍处于实验室研究和小试阶段,缺乏实际工程中稳定运行的案例。据此,提出以下建议:

  (1)开发浓缩液产生量少或不产生浓缩液的新型渗滤液处理工艺。

  (2)改进并完善已有浓缩液处理技术工艺,加快工程化应用进程。

  (3)浓缩液处理处置应遵循全过程管理原则,处理过程中产生的二次污染物,如二次浓缩液、污泥等必须妥善处理。

  (4)开发浓缩液资源化利用技术。

  (5)禁止浓缩液回灌填埋场和送往污水处理厂进行处置。

声明:本文文字转载、图片收集自网络,不代表中国生物质能源网立场,如有侵权,请及时告知我们,我们将在最短的时间内删除。 http://www.cnbioenergy.com/uncategorized/3136.html
广告位
上一篇
下一篇
联系我们

联系我们

0180-88671599

在线咨询: QQ交谈

邮箱: admin@cnbioenergy.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部